Mixtures of Gaussian Distributions under Linear Dimensionality Reduction

نویسندگان

  • Ahmed Fawzi Otoom
  • Óscar Pérez
  • Massimo Piccardi
چکیده

High dimensional spaces pose a serious challenge to the learning process. It is a combination of limited number of samples and high dimensions that positions many problems under the “curse of dimensionality”, which restricts severely the practical application of density estimation. Many techniques have been proposed in the past to discover embedded, locally-linear manifolds of lower dimensionality, including the mixture of Principal Component Analyzers, the mixture of Probabilistic Principal Component Analyzers and the mixture of Factor Analyzers. In this paper, we present a mixture model for reducing dimensionality based on a linear transformation which is not restricted to be orthogonal. Two methods are proposed for the learning of all the transformations and mixture parameters: the first method is based on an iterative maximum-likelihood approach and the second is based on random transformations and fixed (non iterative) probability functions. For experimental validation, we have used the proposed model for maximum-likelihood classification of five “hard” data sets including data sets from the UCI repository and the authors’ own. Moreover, we compared the classification performance of the proposed method with that of other popular classifiers including the mixture of Probabilistic Principal Component Analyzers and the Gaussian mixture model. In all cases but one, the accuracy achieved by the proposed method proved the highest, with increases with respect to the runner-up ranging from 0.2% to 5.2%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Gaussian Mixture Models

Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions....

متن کامل

Dimension reduction for model-based clustering via mixtures of multivariate $$t$$ t -distributions

Dimension Reduction for Model-Based Clustering via Mixtures of Multivariate t-Distributions Katherine Morris Advisor University of Guelph, 2012 Prof. Paul D. McNicholas We introduce a dimension reduction method for model-based clustering obtained from a finite mixture of t-distributions. This approach is based on existing work on reducing dimensionality in the case of finite Gaussian mixtures. ...

متن کامل

Signal Modeling and Classification Using a Robust Latent Space Model Based on t Distributions

Factor analysis is a statistical covariance modeling technique based on the assumption of normally distributed data. A mixture of factor analyzers can be hence viewed as a special case of Gaussian (normal) mixture models providing a mathematically sound framework for attribute space dimensionality reduction. A significant shortcoming of mixtures of factor analyzers is the vulnerability of norma...

متن کامل

Dimensionality Reduction for Distance Based Video Clustering

Clustering of video sequences is essential in order to perform video summarization. Because of the high spatial and temporal dimensions of the video data, dimensionality reduction becomes imperative before performing Euclidean distance based clustering. In this paper, we present non-adaptive dimensionality reduction approaches using random projections on the video data. Assuming the data to be ...

متن کامل

Adaptive Mixtures of Factor Analyzers

A mixture of factor analyzers is a semi-parametric density estimator that generalizes the well-known mixtures of Gaussians model by allowing each Gaussian in the mixture to be represented in a different lower-dimensional manifold. This paper presents a robust and parsimonious model selection algorithm for training a mixture of factor analyzers, carrying out simultaneous clustering and locally l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010